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Figure 1: In order to eliminate assembly errors, FoolProofJoint optimizes finger joint patterns, so as to (a) make pieces inter-
changeable by giving them the same joint patterns where pieces have an identical shape, (b) prevent symmetric pieces from
being mounted in the wrong orientation, and (c) prevent incorrect pieces from being assembled.

ABSTRACT
We present FoolProofJoint, a software tool that simplifies the as-
sembly of laser-cut 3D models and reduces the risk of erroneous
assembly. FoolProofJoint achieves this by modifying finger joint
patterns. Wherever possible, FoolProofJoint makes similar look-
ing pieces fully interchangeable, thereby speeding up the user’s
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visual search for a matching piece. When that is not possible, Fool-
ProofJoint gives finger joints a unique pattern of individual finger
placements so as to fit only with the correct piece, thereby prevent-
ing erroneous assembly. In our benchmark set of 217 laser-cut 3D
models downloaded from kyub.com, FoolProofJoint made groups
of similar looking pieces fully interchangeable for 65% of all groups
of similar pieces; FoolProofJoint fully prevented assembly mistakes
for 97% of all models.

CCS CONCEPTS
• Human-centered computing→ Human computer interaction
(HCI); Interactive systems and tools.
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1 INTRODUCTION
In recent years, laser cutting has become one of the main con-
tenders for fast fabrication. The cutting process itself is fast, it is
a subtractive fabrication method which can cut an entire model
within minutes [5]. Furthermore, recently developed specialized 3D
modeling software, such as FlatFitFab [20], Platener [7], and Kyub
[6] allow generating the required 2D cutting plans quickly, while
allowing users to model efficiently in 3D.

With fast 3D design and fast fabrication in place, assembly has
become the bottleneck that hinders further speed-ups [2]. Assem-
bly requires users to perform a sequence of steps, each of which
typically involves the user connecting a piece with another piece
based on a pair of matching joints.

Several systems offer methods to facilitate correct assembly,
typically with the help of some visual language that communicates
which joint to connect to which other joint. FlatFitFab [20] and
Kyub [6], for example, engrave matching pairs of numbers; Roadkill
[2] instead “points” users to the matching piece directly fromwithin
the 2D layout; Daedalus in the dark [10] laser cuts haptic paths
in the plates to make such assembly instructions are accessible to
blind users.

But assembly instructions have limitations. First, since engraving
assembly instructions into the model arguably ruins the appearance
of that model, more recent systems cut or engrave next to the pieces
[2]. Once a piece is removed from the layout though, piece and
instructions are no longer associated, allowing things to go wrong.
Second, even with instructions engraved into the pieces, we have
observed participants of various laser cutting workshops getting
things wrong from time to time, simply due to human error.

In this paper, we address these types of assembly errors using a
software tool we call FoolProofJoint. Inspired by techniques used
to reduce assembly errors in manufacturing (design for assembly
[8]), FoolProofJoint minimizes visual search by making similar
pieces fully interchangeable (Figure 1a and b) and prevents assembly
errors by making finger joints distinct, unless for pieces that belong
together (Figure 1c). In our benchmark set of 217 laser-cut 3D
models downloaded from kyub.com, FoolProofJoint made groups

of similar looking pieces fully interchangeable for 65% of all groups
of similar pieces; FoolProofJoint fully prevented assembly mistakes
for 97% of all models.

2 FOOLPROOFJOINT
When users assemble a 3D laser-cut model (Figure 2a), they find
themselves looking at a 2D layout of pieces, sometimes referred to
as a cutting plan [6], as illustrated by Figure 2b. Users will typically
pick up a piece and then look for the matching piece to attach.
They may now limit their search to pieces that feature an edge of
matching length; In addition, they may have expectations about
the overall shape of the desired piece that help them select which
piece to pick up.

The assembly situation may thus present itself to the user
roughly as illustrated by Figure 2c, where the model’s 23 pieces fall
into a smaller number of groups based on their rough shape (in the
remainder of this paper, we will refer to this shape, i.e., the piece
with the finger joints filled in, as envelope). Parts within each group
may still differ by their joints—however, users tend to have less
clear expectations about what shape of joint they are looking for,
as they may find it hard to interpret joint patterns quickly enough
to consider them in their visual search.

In this situation, two types of assembly errors tend to emerge.
First, users may reach for an incorrect piece (even if it is from
that piece group). Second, for pieces with a symmetric envelope,
users may try to assemble a piece in the wrong orientation. In the
following, we go over these two classes of assembly errors and how
FoolProofJoint addresses them.

2.1 Issue 1: Users pick up similar looking
pieces

Figure 1a takes a closer look at what happens during assembly.
Here the user is trying to assemble one of the chair’s legs. The user
is looking for a piece that could fit, thus considers all pieces that
feature roughly the dimensions of a leg.

Ideally, the user picks the correct piece and successfully assem-
bles it. However, this may not be the most likely outcome, given that
there are eight pieces of the same envelope and two more pieces
with a similar envelope. There are three other possible outcomes
with increasingly dire consequences.

(1) The user picks up an incorrect piece, tries to assemble it,
and instantaneously recognizes that it does not fit because
their joints collide and cannot be assembled. This case causes
little damage, as the user simply drops the piece and tries a
different one.

Figure 2: (a) The chair of Figure 1 consists of (b) 23 pieces. (c) However, after filling in their joints we see duplicates, resulting
in only 11 groups of pieces.
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(2) Less ideally, the incorrect piece still fits. The user attaches it
to then now realize that it is incorrect, e.g., because adjacent
joints are not aligned. The user removes the piece again and
tries a different one. Removing a piece, however, produces a
lasting negative effect on both pieces involved, as it wears
out their joints, making the final model less sturdy.

(3) The worst possible outcome is illustrated in Figure 3a: an
erroneous piece may fit, and the error may go unnoticed, as
subsequent pieces continue to fit as well, thereby producing
a propagation error. (b) By the time the user recognizes the
issue, the user has to dis- and re-assemble multiple pieces.

Figure 3: Example of a propagation error: (a) The user has
assembled an incorrect piece, but (b) does not find out the
mistake until additional pieces have been assembled.

2.1.1 FoolProofJoint makes joints different. FoolProofJoint ad-
dresses these assembly mistakes by giving each joint pair a unique
finger pattern, which assures that only the correct piece can be
assembled. This prevents erroneous assembly and thus also prop-
agation errors by making users aware of their error before any
piece can be assembled, giving users the opportunity to put the
piece back and try again. Figure 4 shows an example. (a) The user
should assemble the front leg piece to the seat bottom piece, but
accidentally assembles the backrest piece, which just happens to
have a similar envelope. (b) FoolProofJoint resolves this by making
the two joint patterns distinct, preventing the incorrect piece from
being assembled.

2.1.2 FoolProofJoint makes pieces interchangeable, by making their
joints the same. The issue discussed above is caused by pieces ini-
tially looking the same to the user because they are similar, but then
turning out different later when the user notices their differences
led to assembly mistakes. However, if pieces were the same all the
way, no problem would ever arise.

FoolProofJoint exploits this idea. Before making any joints differ-
ent, FoolProofJoint tests whether it might be possible tomake pieces
fully identical and thus interchangeable. FoolProofJoint achieves
this by checking whether the envelopes are the same, whether any
potentially present features such as cutouts and engravings are the
same, and whether the model geometry offers sufficient degrees of
freedom to adjust all involved joints (see Section 5). If that is the
case, FoolProofJoint make the joints of all pieces which mutually
meet these criteria (called a piece group) identical.

Figure 4: (a) Instead of the correct front leg piece, the user
wrongly assembles the backrest piece. (b) FoolProofJoint
prevents this by making joint patterns distinct.

Figure 5: The chair example features eight leg pieces with
the same envelope. (a) Non-optimized pieces can have dif-
ferent joint patterns. (b) By making their joint patterns the
same, FoolProofJoint makes these pieces interchangeable,
allowing users to assemble any of them at any fitting con-
nection, thus reducing visual search. (c) The interchange-
able pieces of legs are connected to each other by rotating
180°which is necessary to completely fill their shared edge.

Figure 5 shows an example. Here FoolProofJoint makes the
joints of all eight leg pieces of the chair model identical, thus the
pieces are fully interchangeable. This not only eliminates the risk
of assembly errors, but also vastly reduces the visual search to find
correct pieces.

2.2 Issue 2: Users accidentally re-orient
symmetric pieces

The second issue that leads to assembly errors are symmetric piece
envelopes. Looking back at Figure 2, shows that all pieces except
for the ones in group 11 feature some sort of symmetry; several
pieces even feature multiple symmetries. As a result, users might
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Figure 6: The user assembles the square foot piece in the wrong orientation causing a propagation error which makes it
impossible to insert the side piece a few assembly steps later.

try to assemble e.g., the chair’s feet in any of the four possible
orientations. As a result, we obtain the same range of outcomes, i.e.,
the user may attach the piece in the correct orientation or—the user
may try an incorrect orientation, causing the piece either not to fit,
or to fit despite the incorrect orientation as illustrated by Figure 6,
which leads to propagation errors.

In our experience, issues resulting from symmetrical piece en-
velopes even happen when users are provided with an instruction
manual: Assembly instructions will often do a good job at guiding
users to the right piece and even the right orientation. However,
once users have picked up that piece, the piece’s original orientation
is quickly lost, as the piece gets rotated or flipped in the user’s hand.

2.2.1 Solution: FoolProofJoint makes symmetric joints. Fool-
ProofJoint addresses issues resulting from symmetric piece en-
velopes in a similar way to how it addresses confusion of pieces.
FoolProofJoint starts by testing whether it might be possible to
make the joints of the piece symmetric in a way that matches its
symmetries. FoolProofJoint achieves this by checking whether the
piece is symmetric, whether no features such as cutouts or en-
gravings are present that might break symmetries, and whether
the model geometry offers sufficient degrees of freedom to adjust
all involved joints (see Section 5: ‘Algorithm’). If that is the case,
FoolProofJoint makes the piece’s joints identical according to the
piece’s symmetry (Figure 7).

Figure 7: Examples of rotationally symmetric pieces. If pos-
sible, FoolProofJoint makes the joints of pieces symmetric
to give the piece the same symmetries as its envelope.

3 CONTRIBUTION
In this paper, we make four contributions. First, we categorize and
describe common classes of mistakes users make when assembling
laser-cut 3D models, namely those stemming from similar and
symmetric pieces. Second, we demonstrate how to resolve these

issues by making pieces interchangeable when possible and distinct
otherwise. Third, we present an algorithm that maximizes the effect
of our approach by means of global optimization. Finally, we vali-
date our approach by means of a technical evaluation involving 217
laser-cut 3D models, where FoolProofJoint made groups of similar
looking pieces fully interchangeable for 65% of all groups of similar
pieces and fully prevented assembly mistakes for 97% of all models.

The benefit of our approach is faster, more reliable assembly.
Limitations include that our current implementation is limited to
finger joints.

4 RELATEDWORK
Our work builds on related work in laser cutting within personal
fabrication, computational joint design, assembly assistance and
design for assembly.

4.1 Laser cutting in personal fabrication
Laser cutting is an efficient and high precision manufacturing
technique in personal fabrication. Unlike other free form manufac-
turing devices, such as 3D printers and CNCmilling machines, laser
cutters can only cut 2D polygonal shapes from planar materials.
However, connecting 2D laser-cut pieces can turn planar designs
into 3D shapes. For example, one can approximate 3D shapes
with cross-sectional cuts [16], wireframe-like pieces [12] and shell
assembly [11]. LaserOrigami [21] enables creating 3D shapes by
cutting and bending acrylic plates in a unified process with the
help of a defocused laser.

To allows novice users to design 3D solid models from
scratch that are inherently laser-cuttable, Kyub [6] proposes a
boxel-based interactive design system that takes care of all the
underlying necessities for cutting and assembling the model, such
as finger-joint arrangement, cutting and assembly instructions.
For functional purposes, researchers presented various integrated
design and optimization systems. FlatFitFab [20] is a sketch-based
laser-cut modeling system, which also simulates and optimizes the
physical stability of cross-sectional models. For 3D solid models,
FastForce [1] provides a reinforcement tool that optimizes the
assembly configurations to enhance the durability of 3D laser-cut
models. Benefitting from the flexibility of laser-cutting, people add
more high-level functionalities to laser-cut models, such as joints
and mounts [27], kerf-canceling connections [26], or even fully
functional mechanisms [23].
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In most of the laser-cutting design and assembly systems, pla-
nar laser-cut pieces are connected with custom-designed joints.
The quality of joint design influences stability, assemblability and
aesthetics of the final model. FoolProofJoint helps creating such
finger-joint connections that prevent assembly mistakes.

4.2 Computational joint design
Creating assemblies with computer generated joints has been re-
searched in numerous fields. According to Wang et al., [30] the
main objectives for generating joints include parts connectivity
[13], part mobility [33] and joint strength [34].

Procedural generation of such connections has been demon-
strated by Whiting et al. [32] for structurally sound masonry build-
ings. Matchsticks [28] introduces CNC milled mortise-and-tenon
connections, while computationally generated 3D printed joints
have been used in TrussFab [17] and Magrisso et al. [19]. Yao et al.
[34] have explored computationally generating decorative inserts.
Joinery [35] is a software tool that generates joint patterns for user
selected edges.

In this paper we focus on finger-joints that are carved out of the
of the parts which are intended to connect. Traditionally these are
generated as repetitive patterns, however in this work we propose
an algorithm to make these connections unique for preventing
mis-assembly.

4.3 Assembly assistance
A common way to assist assembly is to use static and procedural
manuals. However, according to Parmentier et al. [24], procedural
manuals have the following problems: First, users often do not use
instructions. Second, looking at instructions and interpreting them
imposes a cognitive load on users. Third, they have a negative effect
on motivation. Therefore, many research projects have proposed
more advanced methods to instruct assembly processes to users.

A direct consideration is enhancing the visual procedural man-
uals with more intuitive assembly sequences and informative vi-
sualizations [3]. For example, Agrawala et al. [4] present a system
for generating effective assembly instructions which satisfy basic
building principles, and Yan [31] extends the static paper-based
manual with real-time overlays in augmented reality. Moreover,
extra physical add-ons can help to guide the assembly process by
pre-connecting the assembly components, such as 3D printing con-
nected tiles [11], rigid bricks with latex layers [14], or elastic trusses
with pre-stretched fabric [25]. Roadkill [2] guides users in assem-
bling 3D laser cut models by arranging the connecting parts in an
intuitive planar layout.

4.4 Design for assembly
In industrial manufacturing, accurate and quick assembly is an
essential factor for productivity. If humans assemble manufactured
parts, product designers need to design the parts so that they are
easy to assemble. This assembly-aware design is known as Design
for Assembly, or DFA for short [9].

Manufacturing engineers, designers, and researchers established
general guidelines for DFA from accumulated cases and studies.
For example, Bougue [8] and Lu et al. [18] provide comprehensive
general guidelines for DFA, also highlighting the importance of a

mistake-proof design that eliminates systematic errors in human
assembly.
FoolProofJoint reduces assembly mistakes by translating traditional
general DFA guidelines to laser-cut fabrication. It implements three
of the key rules of DFA, namely (1) aiming for mistake-proof designs
[8], (2) minimizing connector types to simplify the design and ease
of the assembly process [18], and (3) designing for simple part
orientation [8].

5 ALGORITHM: HOW FOOLPROOFJOINT
DESIGNS FINGER JOINTS

The primary objective of FoolProofJoint is to make pieces and their
orientations interchangeable to eliminate assembly errors. As we
will see, for some model geometries, however, the problem is over-
constrained, forcing FoolProofJoint to resolve the issue by instead
making the joints of a subset of pieces distinct, rather than identical.
Algorithm 1 shows this procedure in pseudo code.

5.1 Corners
The FoolProofJoint algorithm designs joints as an alternating se-
quence of fingers and gaps, each of which has a certain width. It
considers finger joint patterns as being composed of three parts:
beginning, mid-section, and end. FoolProofJoint starts by determin-
ing the beginning, i.e., whether the joint pattern at hand needs to
start with a finger or a gap and similarly whether the end will be a
finger or a gap. This also determines whether the total number of
fingers and gaps is even or odd.

To determine beginning and end, FoolProofJoint looks at the
model in its entirety. The reason is that the pieces of a model
interact with other pieces at these points. As illustrated by Figure
8a, the corners of a cube or other rectilinear geometry is where three
pieces come together. As we can see, only one piece can extend
all the way into the corner—we call this the primary corner. Then,
a second piece touches the primary corner; we will refer to this
corner as the secondary corner. The remaining space is filled by
what we will call the tertiary corner. (b) When there are more than
three pieces meeting at a corner on e.g., an octahedron, there is
even a quaternary corner.

Beginning and ends of a joint thus assume one of the possible
corners, e.g., they can form a primary, secondary, or tertiary corner
when three pieces are meeting at a corner.

Figure 8: (a) Designing the corner of rectilinear geometry
requires deciding which of the three adjacent pieces is pri-
mary, secondary, and tertiary. (b) Non-rectilinear models
can feature additional corner types. This octahedron, for ex-
ample, also features quaternary corners.
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Algorithm 1 FoolProofJoint
Input: model
Output: finger joint patterns for every edge
// the corners, i.e., beginning and end of joints are determined (see sections 5.4 to 5.7)
corner_assignment = assign_corners(model)
// the middle parts of the joints are determined to prevent mis-assembly (see sections 5.8 to 5.10)
mid_section_joints = generate_mid_section_joints (model, corner_assignment)
// together they form the finger joints of the model
return corner_assignment, mid_section_joints
assign_corners:
Input: model
Output: corner assignment for every corner
// corner types are primary, secondary, tertiary (in some cases more, see Figure 8b)
for the corner types in the model

// Section 5.4
find interchangeable pieces and orientations for each piece

// Section 5.5
create corner variables and set priorities
sort corner variables by priority
for each corner variable

assign corner to the variable if its preferred value is 1
// Section 5.6

update preferred values of the other variables adjacent to this variable
// Section 5.7
handle joints connecting pieces with the same envelope
return corner assignment
generate_mid_section_joints:
Input: model, complete corner assignment
Output: finger joints for every edge
// Section 5.8
generate initial joints and find ambiguous joint pairs
while ambiguous joint pairs exist

find the joint with the most ambiguous joints
// Section 5.9
find other joints to modify together with the found joint
// Section 5.10
modify the joints

return joints

5.2 Interchangeability is an optimization
problem

As we stated earlier, it is not always possible to make all pieces
with the same envelope interchangeable. Figure 9 proves this using
a counter example. A cube consists of six pieces with identical
envelopes. Thus, the optimal solution would be to create the cube
from six interchangeable pieces. However, since a cube features
eight corners, all of which feature exactly one primary corner it’s
not possible to distribute these eight primary corners to its six
pieces evenly. If the pieces don’t have the same number of primary
corners, there is no way to make them all interchangeable.

Because these geometries exist, FoolProofJoint computes inter-
changeability as an optimization process that tries to minimize the
number of types of pieces and tries to maximize rotational sym-
metricity. While it is often impossible to create a perfect solution,

Figure 9: Cubes feature six sides, but eight corners, (a) a so-
lution requires at least two types of pieces. (b) An alterna-
tive solution with two-fold symmetric pieces requires three
types of pieces.
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FoolProofJoint still produces highly useful results, e.g., Figure 9a
for the cube.

Finding the solution which allows for the most interchangeabil-
ity by brute forcing is not computationally feasible. (Example: the
chair model has 42 corners; each corner allows for six possible con-
figurations of primary and secondary corners, resulting in a search
space of 1032corner configurations). FoolProofJoint therefore uses
a heuristic algorithm, as presented in the next section.

5.3 Outline of the FoolProofJoint algorithm
FoolProofJoint assigns corners with the objective of making pieces
and orientations interchangeable. Once corners have been assigned,
FoolProofJoint fills mid-sections while preventing mis-assemblies.

The corner assignment consists of two steps. First, Fool-
ProofJoint assigns priorities for the pieces intersecting at each
corner. Second, it decides whether pieces should or should not fill
corners to achieve interchangeability and symmetricity.

To perform this computation, FoolProofJoint uses three main
variables per piece and corner. Corner variables are set to 1 if the
piece fills this corner. Priorities indicate the order in which Fool-
ProofJoint assigns values to the corner variables. Preferred values
represent what value should be assigned to a corner variable to
fulfill interchangeability and symmetricity.

5.4 Finding interchangeable pieces and
orientations

As a preprocessing step, FoolProofJoint identifies interchangeable
pieces by comparing their envelopes. If the pieces have the same
envelope, then FoolProofJoint tries to make them interchangeable.
FoolProofJoint detects pieces with the same envelopes by character-
izing the pieces by their lengths and internal angles. If two pieces
have the exact same edge lengths and angles in the same order, we
decide that they have the same envelope.

FoolProofJoint finds a piece’s rotationally symmetric orienta-
tions by rotating the piece and checking if the rotated envelopes
match with the original envelope. Multiple rotations can be identi-
cal. We treat every corner angle of the piece as a potential angle for
rotational symmetry. If pieces have textures or cutouts, we assume
they cannot be rotated, because textures and cutouts might not be
rotationally symmetric.

5.5 Set priorities
FoolProofJoint assigns high priorities to pieces from groups con-
taining many pieces (such as the chair’s legs) and to pieces with
many symmetries (such as the chair’s feet). The reason is that as
FoolProofJoint assigns values to the corner variables, it becomes
harder to fulfill interchangeability and symmetricity, because of
constrains imposed by the corner variables which were already
assigned. If FoolProofJoint must break interchangeability and sym-
metricity, it will do so for the corners with a lower priority value. Or
specifically, FoolProofJoint initializes priority with the number of
corners that need to be made identical to achieve interchangeability
and symmetricity.

Figure 10a shows an example, in which FoolProofJoint is trying
to make two pieces A and B interchangeable and rotationally sym-
metric. Tomake A and B interchangeable, the corner variablespA, 1
andpB,1 that describe the “top left” corner on each piece must be the
same. Considering the rotational symmetry of A and B, an optimal
solution would fulfill the equation pA,1 = pA,2 = pB,1 = pB,2.
As a result, FoolProofJoint assigns all four corners a priority
of 3.

5.6 Update preferred values
A piece may not be allowed to fill a corner, because that corner
is already occupied by another piece. The two pieces in Figure
10b, for example, meet at an edge. FoolProofJoint reflects this by
updating the preferred values of pieces touching at a corner. Also,
FoolProofJoint updates preferred values of corners on the other
side of the edge to satisfy symmetricity.

When no piece wants to fill a corner, then the corner is assigned
to the piece with the with the lowest priority at that corner by
setting its preferred value to one. Initially, preferred values are set
to 1.

FoolProofJoint provides a special treatment to concave edges,
such as the one shown in Figure 11a. For this type of geome-
try, sliding in a horizontal piece with corners can be difficult, as
these tend to interlock with the fingers in the sides. FoolProofJoint
therefore locates concave edges first and to assign corner variables
as 1 as to favor the type of corner placement shown in Figure
11b. FoolProofJoint proceeds by assigning corners as described
above.

Figure 10: (a) FoolProofJoint determines that the corner variables should be equal to achieve interchangeability and sym-
metricity. (b) FoolProofJoint updates preferred values of touching pieces along with the corner variable value. In this case,
preferred values are set to 0 to make the vertical piece rotationally symmetrical.
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Figure 11: a) The piece with concave corner in its outline
does not fill the corner. Therefore, users have to slide a piece
between already existing fingers. b) By filling concave cor-
ners, it is easier to assemble pieces to concave corners.

5.7 Joints connecting pieces with the same
envelope

If pieces of the same envelope are connected (as is the case in
Figure 10a), FoolProofJoint postpones assigning their corners. Fool-
ProofJoint assigns the corner to the third piece participating in that
corner (by setting its preferred value to 1, the others to 0), as assign-
ing it to either of the two candidates would break interchangeability
on the spot.

If the third piece’s preferred values happen to be zero as well, Fool-
ProofJoint creates rotationally interchangeable pieces. The chair
legs shown in Figure 5c, for example, fit together if one leg is rotated
by 180°. FoolProofJoint produces this type of interchangeability by
assigning one corner to each of the interconnected joints.

If it is not possible to make the pieces fill the equal number of
corners, FoolProofJoint fills corners with as few pieces as possible.
The cube shown in Figure 9, for example, consists of six pieces.
Since, as discussed in Section 5.2, FoolProofJoint cannot assign
eight corners to six interchangeable pieces, FoolProofJoint lets the
top and bottom pieces fill the corners to minimize the number
of pieces that fill primary corners as shown in Figure 9a. Then

the other four pieces can be made interchangeable. After filling
the primary corners eight secondary corners are left. This time,
four pieces can have secondary corners. Therefore, each piece gets
two secondary corners. Besides this solution, there exists another
solution which creates only mirror symmetric pieces as shown
in Figure 9b. This solution does not equally distribute secondary
corners, so it creates three different pieces.

5.8 Generating joints, preventing assembly
errors

Given that beginning and end of each joint have been defined, it
comes down to filling the mid-section. If beginning and end have
been assigned primary or secondary corners, or if neither has been
assigned primary or secondary corners, the total number of fingers
and gaps is odd. FoolProofJoint aims to fill mid-sections uniformly
with finger widths of twice the material thickness of the pieces,
as suggested by Hasluck [15]. FoolProofJoint thus sets the total
number of fingers and gaps in a joint to the nearest even or odd
number to lenдth of edдe

optimal f inдer width .
Next, FoolProofJoint adjusts finger joints to prevent assembly

errors. FoolProofJoint starts by identifying pairs of joint patterns
that fit but form an incorrect connection. In the following, we call
these joints ambiguous joints.

FoolProofJoint finds ambiguous joint patterns in three steps, as
shown in Figure 12. FoolProofJoint searches for ambiguous joints
on the target piece in Figure 12. The model has a single correct
mating joint. First, FoolProofJoint finds pieces that have the same
joint pattern and their counterparts. Second, FoolProofJoint checks
if connecting the found pieces and the target piece is valid or not
by looking at the connected pairs in the model. In the last step,
FoolProofJoint checks if the invalid pieces from the previous steps
are similar to the correct counter piece. This step filters out pieces
with a dissimilar envelope that are unlikely to be confused. Users
are unlikely to confuse e.g., B with the correct piece. However, A
has a very similar envelope and might be confused. Thus, the piece
is considered ambiguous, as well as the joint pattern which fits to
the target piece.

Figure 12: Ambiguous joint patterns finding process.
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FoolProofJoint determines the similarity of two pieces by cal-
culating a distance between the shapes of their envelopes. It con-
siders envelopes as similar if this distance is below a threshold
which we determined by analyzing the models from our test set.
It uses the turning function [20, 22, 29] to calculate distances be-
tween the shapes of envelopes. A turning function represents a
shape as a graph of normalized length and angle of each point,
as shown in Figure 13a. The difference between two shapes can
be calculated by integrating the difference between their two
turning functions. However, turning functions are scale invari-
ant. To take scale into account, we multiply the turning func-
tion difference between the shapes by the ratio of their areas.
As a result, the distance between two envelopes is computed as
turninд f unction di f f erence ∗ (

biддer envelop area
smaller envelop area ).

Figure 13: a) Turning functions of two sample pieces from
the chair model. Gray area is the difference of the turning
functions. b) Distances of envelopes in the chair model.

Tomake the distance value rotationally invariant, FoolProofJoint
creates turning functions in all possible orientations and calculates
differences for all pairs of two envelopes and chooses the smallest
one. We considered two envelopes are similar if their distance is
smaller than 0.1. Figure 13b shows distance examples.

5.9 Determining which joint patterns should
be the same or opposite

Updating a single joint pattern can break interchangeability
between pieces and the piece’s symmetricity. Therefore, Fool-
ProofJoint finds joint patterns that need to be updated together.
First, it looks for patterns that should be the same, then, it finds

the mating joints. For example, as shown in Figure 14a, there are
two ambiguous joints highlighted and FoolProofJoint tries to up-
date joints in the gray pieces. FoolProofJoint needs to change one
of the ambiguous joints to prevent mis-assembly. Therefore, Fool-
ProofJoint marks one of the joint patterns to be updated and it
updates the mating joint accordingly. It repeats this for all other
joint patterns that connect to interchangeability and symmetricity.

Figure 14: FoolProofJoint updatesmultiple joint patterns to-
gether to keep interchangeablity and symmetricity.

However, if a piece is in the middle of multiple ambiguous joints,
it is not possible to maintain the interchangeability and symmetric-
ity. For example, the model in Figure 15 has two ambiguous joints:
J1 and J2. Therefore, J1 and J3 should be changed, because A is
rotationally symmetric. The best solution is to only break the sym-
metricity of B.

Figure 15: a) An example case of breaking symmetricity for
disambiguating joints. b) C and D have ambiguous joint pat-
terns, i.e., connecting them is incorrect even though it is pos-
sible. c) B is rotationally symmetric, before modifying the
ambiguous joint.

5.10 Disambiguating joint patterns
FoolProofJoint differentiates joint patterns by shifting fingers. We
represent these shifts as digits of a ternary numerical system. If the
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Figure 16: a) Either fingers or gaps are considered as bits
of a ternary number. When number 0 is encoded, nothing
changes. b) When 1 is assigned to a finger or gap, it shifts to
left. c) When 2 is assigned, fingers or gaps shift to right.

digit is 0, the corresponding finger is not shifted. If it is 1 as shown
in Figure 16b, the corresponding finger is shifted to the left. When
it is 2, it is shifted to the right. This results in 3#f inдers possible
encodings for a joint pattern of a given length. If this is not enough
to prevent all assembly mistakes, FoolProofJoint adds more fingers
if the finger width is not less than 4 mm. FoolProofJoint shifts in
intervals of 2 mm. This difference is large enough to prevent assem-
bly of incorrect joint patterns and small enough to not interfere
with neighboring fingers.

FoolProofJoint finds ambiguous joint pairs in a model. It changes
the pattern of the most frequent joint in that collection and ad-
justs mating candidates to be either all the same or unique. Fool-
ProofJoint repeats this until all joints are disambiguated.

6 TECHNICAL EVALUATION
We conducted a technical evaluation, in which we downloaded 3D
laser-cut models from an online repository and applied the Fool-
ProofJoint algorithm to create finger joint patterns. We evaluated
to what extent FoolProofJoint would make similar pieces inter-
changeable, symmetric pieces fully rotationally symmetric, and
disambiguate all other joints.

6.1 Metrics
We evaluated the success of the FoolProofJoint algorithm in terms of
three metrics. First, we evaluated the degree of piece interchange-
ability across groups of pieces with the same envelope. We ex-
amined whether all pieces in these groups had been made fully
interchangeable. Second, we evaluated how many pieces with a
rotationally symmetric envelope were symmetric after assigning
joint patterns. Third, we evaluated the prevention of assembly mis-
takes by evaluating whether any wrong connections could be made
in each model.

6.2 Data set
We downloaded the top 104 hits returned by ranking models on
kyub.com by popularity, as shown in Figure 17. Many of them
contained multiple models, resulting in an overall number of 220
models. We removed the three models that did not contain any
finger joints, leaving us with 217 models, which we used in our
evaluation.

We applied the FoolProofJoint algorithm to all 217models. Figure
18 shows four example results.

6.3 Results
Figure 19 summarizes our findings. For 65% of groups of pieces with
the same envelope, FoolProofJoint succeeded at making all pieces in
the group interchangeable. The remaining groups were still success-
fully processed but resulted in more than one set. FoolProofJoint
made 47% of the pieces the envelope of which featured some sort
of symmetry fully symmetric by providing them with matching
joint patterns. 7% of the groups that ended up non-interchangeable
had been made interchangeable in the first steps of FoolProofJoint,
yet FoolProofJoint then sacrificed this interchangeability later, to
guarantee disambiguation (Section 5.9).

For 211 out of 217 models (97%), FoolProofJoint produced a
result that cannot be mis-assembled, as all pieces had either been

Figure 17: We downloaded 104 search results, excluding 3 results without finger joints, and extracted 217 models.
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Figure 18: Example results from the dataset. In the 2D view, the stacked pieces are interchangeable, and the gray pieces are
rotationally symmetric.

made interchangeable or have been disambiguated. The 6 remaining
models contained edges that were too short to allow FoolProofJoint
to create varied joint patterns necessary for disambiguation.

Figure 19: Results on interchangeability, rotational symme-
try, and prevention of assembly mistakes

6.4 Discussion
Our results show that in 97% of cases, all joints of the resulting
models had been successfully disambiguated, so that users will not
be able to connect wrong pieces.

For most models, FoolProofJoint went a step further and made
groups of parts interchangeable and/or symmetric parts fully sym-
metric. This simplifies assembly as discussed throughout this paper,
in that this allows users to now pick up any piece that features the
right envelope and/or allows users to attach parts in any orienta-
tion.

These insights combined suggest that FoolProofJoint indeed
succeeds at simplifying assembly and reducing the potential for
assembly errors.

7 CONCLUSION
We have presented FoolProofJoint, a software tool that adjusts
finger joint patterns to reduce the likelihood of assembly errors
by (1) giving similar pieces identical joint patterns to make them
interchangeable, (2) giving pieces symmetric joint patterns accord-
ing to their symmetry, and (3) giving everything else distinct joint
patterns.

FoolProofJoint is as a step towards fast and most of all, reliable
assembly. This step matters, as fast cutting machines and efficient
design tools have sped up rapid prototyping, with assembly being
the new bottleneck. FoolProofJoint also makes assembly more pre-
dictable. By eliminating the particularly time-intensive types of
errors, such as propagation errors, FoolProofJoint has the potential
to help groups of users finish their assemblies roughly at the same
time. This matters when running workshops and in school class,
where predictable timing is of the essence.

As future work, we plan to extend our approach to additional
joint types and explore other ways of making assembly more pre-
dictable.
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