MUHAMMAD ABDULLAH
Picture

Muhammad Abdullah

I am a PhD Student with Patrick Baudisch at Hasso Plattner Institute (HPI)
muhammad.abdullah(at)hpi.de

Full Papers at CHI/UIST

Google Scholar
Picture
[6] HingeCore: Laser-Cut Foamcore for Fast Assembly
Muhammad Abdullah, Romeo Sommerfeld, Bjarne Sievers, Leonard Geier, Jonas Noack, Marcus Ding, Christoph Thieme, Laurenz Seidel, Lukas Fritzsche, Erik Langenhan, Oliver Adameck, Moritz Dzingel, Thomas Kern, Martin Taraz, Conrad Lempert, Shohei Katakura, Hany Mohsen Elhassany, Thijs Roumen, and Patrick Baudisch
In Proceedings of UIST'22 (full paper)

HingeCore is a novel type of laser-cut 3D structure made from sandwich materials, such as foamcore. The key design element behind HingeCore is what we call a finger hinge, which we produce by laser-cutting foamcore "half-way". The primary benefit of finger hinges is that they allow for very fast assembly, as they allow models to be assembled by folding and because folded hinges stay put at the intended angle, based on the friction between fingers alone, which eliminates the need for glue or tabs. Finger hinges are also highly robust, with some 5mm foamcore models withstanding 62kg. We present HingeCoreMaker, a stand-alone software tool that automatically converts 3D models to HingeCore layouts, as well as an integration into a 3D modeling environment for laser cutting (kyub). We have used HingeCoreMaker to fabricate design objects, including speakers, lamps, and a life-size bust, as well as structural objects, such as functional furniture.
paper 
video
acm DL
Picture
[5] FoolProofJoint: Reducing Assembly Errors of Laser Cut 3D Models by Means of Custom Joint Patterns
Keunwoo Park, Conrad Lempert, Muhammad Abdullah, Shohei Katakura, Jotaro Shigeyama, Thijs Roumen, and Patrick Baudisch
In Proceedings of CHI '22 (full paper)

FoolProofJoint is software tool that simplifies the assembly of laser-cut 3D models and reduces the risk of erroneous assembly. FoolProofJoint achieves this by modifying finger joint patterns. Wherever possible, FoolProofJoint makes similar looking pieces fully interchangeable, thereby speeding up the user's visual search for a matching piece. When that is not possible, FoolProofJoint gives finger joints a unique pattern of individual finger placements so as to fit only with the correct piece, thereby preventing erroneous assembly.
paper
video
acm DL
Picture
[4] Roadkill: Nesting Laser-Cut Objects for Fast Assembly
Muhammad Abdullah, Romeo Sommerfeld, Laurenz Seidel, Jonas Noack, Ran Zhang, Thijs Roumen, and Patrick Baudisch

In Proceedings of UIST '21 (full paper)
🏆 nominated for best paper award

Roadkill is a software tool that converts 3D models to 2D cutting plans for laser cutting—such that the resulting layouts allow for fast assembly. Roadkill achieves this by putting all relevant information into the cutting plan: (1) Thumbnails indicate which area of the model a set of parts belongs to. (2) Parts with exposed finger joints are easy to access, thereby suggesting to start assembly here. (3) Openings in the sheet act as jigs, affording assembly within the sheet. (4) Users continue assembly by inserting what has already been assembled into parts that are immediately adjacent or are pointed to by arrows. Roadkill maximizes the number of joints rendered in immediate adjacency by breaking down models into “subassemblies.” Within a subassembly, Roadkill holds the parts together using break-away tabs. (5) Users complete subassemblies according to their labels 1, 2, 3…, following 1  > 1 links to insert subassemblies into other subassemblies, until all parts come together. In our user study, Roadkill allowed participants to assemble layouts 2.4 times faster than layouts generated by a traditional pair-wise labeling of plates.
paper
video
acm DL
Picture
[3] Fastforce: Real-Time Reinforcement of Laser-Cut Structures
Muhammad Abdullah, Martin Taraz, Yannis Kommana, Shohei Katakura, Robert Kovacs, Jotaro Shigeyama, Thijs Roumen, and Patrick Baudisch

In Proceedings of CHI '21 (full paper)

FastForce is a software tool that detects structural flaws in laser cut 3D models and fixes them by introducing additional plates into the model, thereby making models up to 52x stronger. By focusing on a specific type of structural issue, i.e., poorly connected sub-structures in closed box structures, fastForce achieves real-time performance. This allows fastForce to fix structural issues continuously in the background, while users stay focused on editing their models and without ever becoming aware of any structural issues.
paper
video
acm DL
Picture
[2] Assembler3: 3D Reconstruction of Laser-Cut Models
Thijs Roumen, Yannis Kommana, Ingo Apel, Conrad Lempert, Markus Brand, Erik Brendel, Laurenz Seidel, Lukas Rambold, Carl Goedecken, Pascal Crenzin, Ben Hurdelhey, Muhammad Abdullah, and Patrick Baudisch

In Proceedings of CHI '21 (full paper)

Assembler3 is a software tool that allows users to perform 3D parametric manipulations on 2D laser cutting plans. Assembler3 achieves this by semi-automatically converting 2D laser cutting plans to 3D, where users modify their models using available 3D tools (kyub), before converting them back to 2D. This workflow is 10x faster than using the traditional approach of editing 2D cutting plans directly. Assembler3 converts models to 3D using a 5-step algoritm. Once reconstructed, we expect users to store and share their models in 3D, which can simplify collaboration and thereby empower the laser cutting community to create models of higher complexity.
paper
video
acm DL
Picture
[1] Kerf-Canceling Mechanisms: Making Laser-Cut Mechanisms Operate Across Different Laser Cutters
Thijs Roumen, Ingo Apel, Jotaro Shigeyama, Abdullah Muhammad, and Patrick Baudisch

In Proceedings of UIST '20 (full paper)

Getting laser-cut mechanisms, such as those in microscopes,robots, vehicles, etc., to work, requires all their components to be dimensioned precisely. This precision, however, tends to be lost when fabricating on a different laser cutter, as it is likely to remove more or less material (aka kerf). We address this with what we call kerf-canceling mechanisms. Kerf-canceling mechanisms replace laser-cut bearings, sliders, gear pairs, etc. Unlike their traditional counterparts, however, they keep working when manufactured on a different laser cutter and/or with different kerf. Kerf-canceling mechanisms achieve this by adding an additional wedge element per mechanism. We have created a software tool Kerf-Canceler that locates traditional mechanisms in cutting plans and replaces them with their kerf-canceling counterparts.​
paper
video
acm DL
2021 Muhammad Abdullah